
Lecture notes

We count graphs with a labeled set of vertices, usually, [n].
Ex.: There are 23 = 8 distinct graphs on [3], and 3 of these graphs are trees.
Here is a slight extension of the famous Cayley’s Formula (proved by Borchardt in 1860).

Theorem 1 (Th. 6.1.18 in the book). For all 1 ≤ k ≤ n, the number bn,k of forests of rooted
trees with vertex set [n] that have k components and a given set of k roots is knn−k−1. In
particular, there are nn−2 trees with vertex set n.

Proof. Induction on n. If n = 1 or n = k, then bn,k = 1.
Suppose n > k ≥ 1 and the theorem holds for all smaller n′ ≥ k′. Consider an n-vertex

k-component forest F with the set K of k roots and the set R of the neighbors of these roots.
By deleting K from F , we get an (n− k)-vertex r-component forest F ′ with with the set R
of r roots. By definition, the number of such forests with the set of roots R is bn−k,r. Each
such F ′ can be extended to an n-vertex k-component forest F with the set K of roots in kr

ways. So by induction,

bn,k =
n−k∑
r=1

(
n− k

r

)
krbn−k,r =

n−k∑
r=1

(
n− k

r

)
krr(n− k)n−k−r−1

= k
n−k∑
r=1

(
n− k − 1

r − 1

)
kr−1(n− k)n−k−1−(r−1) = k(k + n− k)n−k−1. □

Among ways to code a graph are adjacency and incidence matrices. For labeled trees, there
are nicer and shorter ways to code. Consider the following procedure for a tree T with vertex
set {1, . . . , n}:

Prüfer algorithm. Let T0 = T . For i = 1, . . . , n− 1,
(a) let bi be the smallest leaf in Ti−1,
(b) denote by ai the neighbor of bi in Ti−1, and
(c) let Ti = Ti−1 − bi.
The Prüfer code of T is the vector (a1, . . . , an−2).

EXAMPLE.
Properties of Prüfer algorithm
(P1) an−1 = n.
(P2) Any vertex of degree s in T appears in (a1, . . . , an−2) exactly s− 1 times.
(P3) bi = min {k : k /∈ {b1, . . . , bi−1} ∪ {ai, ai+1, . . . , an−2}} for each i.

Proofs. (P1) follows from the fact that we always have a leaf distinct from n.

(P2) follows from the facts that at the moment some k appears in (a1, . . . , an−2), its degree
decreases by 1 and for s ≥ 3 the neighbors of leaves in s-vertex trees are not leaves.

(P3) follows from the algorithm and (P2). □

Theorem 2 (Prüfer, 1918). Every vector (a1, . . . , an−2) with ai ∈ {1, . . . , n} for each i is
the Prüfer code of exactly one labeled n-vertex tree.
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——————————– Here Lecture 1 ended.
Proof. Uniqueness. By (P1) we know an−1 = n. Then by (P3), we can reconstruct bi

for all 1 ≤ i ≤ n− 1. Thus the edges are a1b1, . . . , an−1bn−1.

Existence. Given (a1, . . . , an−2), we let an−1 = n and define numbers bi by (P3). Now
consider the edges going from an−1bn−1 backwards and check that for each i, bi is a leaf in
the graph formed by the edges aibi, . . . , an−1bn−1. □

AN EXAMPLE.

Theorem 3 (Matrix Tree Theorem, Kirchfoff, 1847). Let G be a loopless multigraph with
V (G) = {v1, . . . , vn} and ai,j edges connecting vi and vj. Let Q = (qi,j)

n
i,j=1,

where qi,j =

{
d(vi), if j = i;
−ai,j, if j ̸= i.

Let Qs,t be obtained from Q by deleting row s and column t.

Then τ(G) = (−1)s+t detQs,t.

Laplace extension: Let A = (aij)
n
i,j=1 be a square matrix. Then

1) For each i, detA =
∑n

j=1(−1)i+jaijdetAij.

2) For each i2 ̸= i1,
∑n

j=1(−1)i1+jai1jdetAi2j = 0.

Lemma 4. Let A = (aij)
n
i,j=1 be a matrix with columns A1, . . . , An. If

∑n
j=1Aj =


0
0
. . .
0

 ,

then for each i and each j1, j2,

(−1)j1detAij1 = (−1)j2detAij2 .

Proof in class and Lemma 6.1.24 in the book.

Lemma 5 (Binet-Cauchy Formula). Let A = (aij) be an n × m matrix, B = (bji) be an
m × n matrix, C = AB. For S ⊂ [m] with |S| = n, let AS (respectively, BS) denote the
n×n submatrix of A (respectively, of B) formed by the columns (respectively, rows) indexed
by S. Then

detA =
∑

S⊂[m]:|S|=n

detASdetBS.

This is a HOMEWORK PROBLEM.

Proof of Matrix Tree Theorem. (1) Let D be any orientation of G and M be its
incidence matrix. Then Q = MMT .

(2) Let B be any (n− 1)× (n− 1)-submatrix of M . Then detB = 0 if the corresponding
n− 1 edges in G form a subgraph with a cycle. Otherwise, detB ∈ {−1, 1}.
Let M∗ be obtained from M by deleting row n. Then Q∗ = M∗(M∗)T .
(3) Calculate detQ∗ by Lemma 5: every term is 0 or 1, and 1 if the edges in S form a tree.
——————————– Here Lecture 2 ended.
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A branching or out-tree is an orientation of a tree that directs all edges from a given vertex
(a root).

An arborescence is a digraph whose every component is a branching. An in-tree is a
reversed branching.

For a digraph G with incidence matrix A, let D+ (resp. D−) be the diagonal matrix of
in-degrees (resp. out-degrees), Q+ = D+ − AT and Q− = D− − AT .
Examples.

Theorem 6 (Directed Matrix Tree Theorem, Tutte, 1948, Th. 6.1.28 in the book). The
number of spanning out-trees (in-trees) of G rooted at vi is the value of the cofactor for any
entry in ith row of Q− (ith column of Q+).

Examples.

Instead of Theorem 6, we will prove a much more general theorem:

Theorem 7 (Matrix Arborescence Theorem, Chaiken–Kleitman, 1978, Th. 6.1.30 in the
book). For real aij, variables x1, . . . , xn and an arborescence A on {v1, . . . , vn}, let wA =∏

vjvi∈E(A) aijxj. For S ⊆ [n], let T (S) be the set of all arborescences on {v1, . . . , vn} whose

set of roots is {vi : i ∈ S}. Define Q = (qij)
n
i,j=1 as follows:

qij =

{
−aijxj, i ̸= j;∑

ℓ̸=i aiℓxℓ, i = j.

If QS is obtained from Q by deleting all rows and columns indexed by S, then

detQS =
∑

A∈T (S)

wA.

Observation. Theorem 6 is obtained from Theorem 7 by letting aij be the number of
edges from vj to vi, letting all xj = 1 and S be a singleton.

EXAMPLES.
Proof of Theorem 7. By induction on m = n − s, where s = |S|. If n = s, then we

get 1 = 1. Suppose the theorem holds for n − s ≤ m − 1. Consider any choice of S ⊂ [n]
with |S| = s and any aijs. We view detQS as a polynomial of degree m, fS(x1, . . . , xn). For
i ∈ S, call xi a root variable.

Two claims:

(1) In both,
∑

A∈T (S) wA and fS(x1, . . . , xn) each term has degree 0 in some non-root
variable

(2) For each non-root variable xi, the terms in which xi is missing coincide in
∑

A∈T (S) wA

and fS(x1, . . . , xn).

Together, the claims imply the theorem, so let us prove them.
——————————– Here Lecture 3 ended.

Proof of (1). Since k < n, in wA there are non-root vertices. The outdegree of a non-root
leaf vi is 0, and hence xi is not present.
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Consider detQS. Recall that the sum of columns of Q is the zero vector by definition.
When we delete rows and columns corresponding to S, this is not true because in the diago-
nal elements some terms with xj for j ∈ S may remain. But when we set all these variables
to 0, the property recovers. So fS |xj=0,j∈S≡ 0. This means each term of QS contains xj

for some j ∈ S. Since the degree of each term is m, some of the m non-root variables is
missing. □

Proof of (2). Consider the terms with no non-root xt in both polynomials. In
∑

A∈T (S) wA

they arise from the arborescences where xt is a leaf. Each such arborescence A is obtained
from an arborescence A′ with n− 1 vertices by adding an arc to vt. So if T ′ is the set of all
arborescences on V (G)− vt, then the sum of terms omitting xt is( ∑

A′∈T ′(S)

wA′

)(∑
j ̸=t

at,j · xj

)
.

In fS the terms omitting xt form fS(x1, . . . , xt−1, 0, xt+1, . . . , xn). The only non-zero entry
in the ts column of this determinant is

∑
j ̸=t at,jxj in row t. Expand the determinant w.r.t.

this column: By the IH, the remaining determinant equals
(∑

A′∈T ′(S)wA′

)
. □

Together, the claims prove the theorem. □

AN EXAMPLE.

Eulerian circuits versus trees in digraphs

Lemma 8 (Lem. 6.1.33 in the book). For each Eulerian circuit in a digraph G that begins
from vertex v along edge e, the set T of edges last leaving each vertex apart from v forms an
in-tree with root v.

Proof. The outdegree in T of each vertex apart from v is 1, the outdegree of v is 0, and
there are no directed cycles. □

Algortithm.
Input. An Eulerian digraph D and a spanning in-tree T .
Step 1. For each u ∈ V (D), give an order of exiting edges s.t.
(*) for each u ̸= v, the edge of T is the last.
Step 2. Starting from v always go along the non-used edges smallest in the order.

Lemma 9 (Lem. 6.1.35 in the book). The algorithm above always produces an Eulerian
circuit in D.

Proof. We check that by (*) the our trail L can stop only at v. Hence L uses all edges
entering v. Then for each in-neighbor w of v, L also uses all edges entering w. Continuing,
we conclude that L uses all edges at each vertex. □

Theorem 10 (BEST Theorem, de Bruijn–van Aardenne-Ehrenfest, 1951, Smith–Tutte,
1941, Th. 6.1.36 in the book). Let D be an Eulerian digraph with V (D) = {v1, . . . , vn},
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where d+(vi) = d−(vi) = di for all 1 ≤ i ≤ n. Let M = Mj be the number of spanning
in-trees in D with root vj. Then the number of Eulerian circuits in D is

M
n∏

i=1

(di − 1)!.

Proof. For each in-tree, the algorithm produces
∏n

i=1(di − 1)! distinct Eulerian circuits,
and by Lemma 8, each Eulerian circuit is obtained this way. □

Corollary 11. In each Eulerian digraph, the number of spanning in-trees with root vi is
equal for all vi (and equal to the number of spanning out-trees with root vi).

Corollary 12. In each Eulerian digraph, the number of Eulerian circuits can be computed
in polynomial time.

Note that for undirected graphs it is NP-complete to calculate the number of Eulerian
circuits.

——————————– Here Lecture 4 ended.

Decompositions and graceful labelings

A decomposition of a graph G is a set of edge-disjoint subgraphs of G whose union is G.
An H-decomposition of G is a decomposition in which each subgraph is H.

Conjecture (Ringel, 1964). For each m-edge tree T , K2m+1 has a T -decomposition.
Examples.
Solution by Montgomery, Pokrovsky and Sudakov.
A graceful labeling of a graph G with m edges is an injective function f : V (G) →

{0, 1, . . . ,m} such that {|f(u)− f(v)| : uv ∈ E(G)} = [m].
Examples.
Conjecture (Kotzig, 1964?). Every tree has a graceful labeling.

Theorem 13 (Rosa, 1967, Th. 6.1.41 in the book). If a graph T with m edges has a graceful
labeling, then K2m+1 has a T -decomposition.

Proof. View 0, 1, . . . , 2m as vertices of a cycle C2m+1. The difference between i and j is
the distance in C2m+1 between them. The set Ei of the edges in K2m+1 has 2m + 1 edges
forming a 2-factor. When we place the vertices of T onto C2m+1 according to its graceful
labeling, all edges of T are in different Ei. Rotating T around the cycle never uses the same
edges, and each edge will be in exactly one copy of T . □

Caterpillars have graceful labelings. - The idea in the lecture and in the book.

Theorem 14 (Wilson, 1976, Th. 6.1.49 in the book). For a graph H with m edges, let
q = q(H) be the gcd of the vertex degrees of H. There is nH s.t. for each n ≥ nH with
m |

(
n
2

)
and q | (n− 1) graph Kn has an H-decomposition.

Conjecture (Graham–Häggkvist). For each m-edge tree T , each 2m-regular graph
has a T -decomposition and each m-regular bipartite graph has a T -decomposition.

5



Theorem 15 (Th. 6.1.52 in the book). Let T be a tree with m edges. If a 2m-regular graph
G has a 2-factorization s.t. no cycle in G of length at most 1 + diam(T ) has all its edges in
different factors, then G has a T -decomposition.

Proof. Let F = (F1, . . . , F2m) be such a ”good” 2-factorization. By induction on m we
prove that for any injective marking f of the vertices of T , there is a T -decomposition of G
s.t.
(a) each vertex of G appears in m+ 1 copies of T once with each name, and
(b) each copy of T uses one edge from each Fi.

——————————– Here Lecture 5 ended.
For m = 1 the claim is immediate. Suppose it is proved for all m′ < m. Let f be a vertex

marking of T and i is a leaf in T with neighbor j. By induction there is such decomposition
of G− E(Fm) into copies of T ′ = T − i. Fix a cyclic orientation D of all cycles in Fm. For
each v ∈ V (G), let v′ be the unique successor of v in Fm. By (a), there is a unique copy
T ′(v) of T ′ in which v plays the role of j. Extend T ′(v) to a copy T ′(v) of T by adding edge
vv′. The main observation is that v′ is not in V (T ′(v)), since otherwise by (b) we would get
a cycle all whose edges are in distinct Fh. □

Conjecture (Gyárfás). For any trees T1, . . . , Tn−1 where Ti has i edges, Kn decomposes
into T1, . . . , Tn−1.

AN EXAMPLE.

Graph packing
A packing of n-vertex graphsG1, . . . , Gk is an expression of them as edge-disjoint subgraphs

of Kn.
Two n-vertex graphsG andH pack ifG is a subgraph of the complement ofH, equivalently,

if H is a subgraph of the complement of G.
1978: Sauer–Spencer, Bollobás–Eldridge, Catlin.

Theorem 16 (Sauer–Spencer, 1978, Prop. 6.1.56 in the book). If G and H are n-vertex
graphs and |E(G)| · |E(H)| <

(
n
2

)
, then G and H pack. The restriction is sharp.

Proof. There are n! bijections from V (G) to V (H). For each e ∈ E(G), f ∈ E(H), there
are exactly 2(n − 2)! such bijections mapping e onto f . So, the total number of bijections
mapping some edge of G onto some edge of H is less than(

n

2

)
· (2(n− 2)!) = n!.

Hence there is a bijection that is a packing.
Examples: 1) Kn and a K2, 2) Star and perfect matching when n is even. □

——————————– Here Lecture 6 ended.

Theorem 17 (Catlin, 1974, Sauer–Spencer, 1978, Th. 6.1.57 in the book). If G and H are
n-vertex graphs and 2∆(G)∆(H) < n, then G and H pack. The restriction is sharp.

Proof. Let σ be a bijection from V (G) to V (H) with the least edges of G mapped onto
edges of H. Let V (G) = {x1, . . . , xn} and V (H) = {y1, . . . , yn} so that σ(xi) = yi for all i.
W.l.o.g., we may assume that x1xn ∈ E(G) and y1yn ∈ E(H). We refer to edges of G as
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”red” and to edges of H as ”blue”. If we switch the image of xn with the image of xk for
some 2 ≤ k ≤ n − 1, then there are two dangers: (a) there exists j s.t. xnxj ∈ E(G) and
ykyj ∈ E(H) or (b) there exists i s.t. xkxi ∈ E(G) and ynyi ∈ E(H).

The k not good by (a) are blue neighbors of red neighbors of xn. The total number of blue
neighbors of red neighbors of xn is at most ∆(G)∆(H), and one of them is xn itself, so (a)
excludes at most ∆(G)∆(H) − 1 options for 2 ≤ k ≤ n − 1. Similarly, (b) also excludes at
most ∆(G)∆(H)− 1 options, at so at least one switch would decrease the number of edges
of G mapped onto edges of H, contradicting the choice of σ. □

Examples of sharpness!
Conjecture, Bollobás–Eldridge-Catlin. If G and H are n-vertex graphs and (∆(G)+

1)(∆(H) + 1) ≤ n+ 1, then G and H pack.
Examples of sharpness!
Aigner-Brandt and Alon-Fisher: ∆(G) ≤ 2. Csaba-Shokoufandeh-Szemerédi: ∆(G) = 3

for huge n.

Equitable coloring
A proper k-coloring of a graph G is equitable if the sizes of all color classes differ by at

most 1. In terms of packing, this is a packing of a graph with the n-vertex graph that is a
disjoint union of cliques of almost the same size.

Examples: K1,n−1, K2m+1,2m+1.
Not monotone!

Theorem 18 (Hajnal-Szemerédi, 1970, Th. 6.1.60 in the book). For each graph G and each
k > ∆(G), G has an equitable k-coloring.

Proof. Step 1: Prove that it is enough to consider the case |V (G)| divisible by k, say
|V (G)| = n = ks.

Step 2: Use induction on |E(G)| for graphs with max degree at most k − 1. The base is
trivial. Suppose the theorem holds for all graphs with less than m edges and G has m edges
and max degree at most k − 1.

Construct a near-equitable k-coloring of G. Let the color classes be V1, . . . , Vk, where
|V1| = s− 1, |V2| = . . . = |Vk−1| = s, and |Vk| = s+ 1.

——————————– Here Lecture 7 ended.
Step 3: Define a digraph H with V (H) = {V1, . . . , Vk} and ViVj ∈ E(H) iff some w ∈ Vi

has no neighbors in Vj. Say that Vi is accessible if H has a Vi, V1-path.
If Vk is accessible, then we are done. So suppose not. Choose a near-equitable k-coloring f

with the fewest inaccessible classes. Let A be the set of accessible classes and B = V (H)−A.
So V1 ∈ A, Vk ∈ B.
Let a = |A|, b = |B|, A

⋃
W∈AW , B

⋃
W∈B W .

For W,X ∈ A, W blocks X if H −W has no X, V1-path. In particular, V1 blocks all. If
W ∈ A blocks no other X ∈ A, it is called free. Let A′ be the set of free classes, a′ = |A|′,
A′ ⋃

W∈A′ W .
A vertex x ∈ X ∈ A′ is moveable if there is another W ∈ A s.t. x has no neighbors in W .
For x ∈ X ∈ A′ and y ∈ B, x is the solo neighbor of y if x is the unique neighbor of y in

X. In this case, edge xy is a solo edge.
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Step 4: Claim 1. If x ∈ X ∈ A′ is moveable, y ∈ Y ∈ B and xy is a solo edge, then G
has an equitable k-coloring.

Proof: in the book and in class.
Step 5: Claim 2. If x ∈ X ∈ A′ is not moveable, y, y′ ∈ B and xy, xy′ are solo edges,

then G has a near-equitable k-coloring with fewer inaccessible classes.
Proof. Each y ∈ B has at least a neighbors in A and hence < b neighbors in B. So by

induction G[B − y] has an equitable b-coloring g.
Since x is not moveable, dA+y(x) ≥ a and so dB−y(x) < k− a = b. Hence we can add x to

some of b classes, and call the new class Vk.
Since x was a solo neighbor of y in X, the set X ′ = X − x+ y is independent. So we get

a new near-equitable coloring g′ of G. Since X was free, each other class in A′ is accessible.
Since x was not moveable, some other vertex was, so X ′ is in the new A. Since y′x was solo,
and yy′ /∈ E(G), the class of y′ is also accessible now.
Step 6: We will show now that always the conditions of Claim 1 or the conditions of Claim

2 are satisfied.

Case 1: a′ ≤ b. Let A′′ = A − A′. Note V1 ∈ A′′. There is W ∈ A′′ that blocks only
classes in A′. Let Vj ∈ A′ be blocked by W . Then dA(x) ≥ a− a′ − 1 for each x ∈ Vj, so by
the case,

(1) dB(x) ≤ k − (a− a′ − 1) ≤ b+ a′ ≤ 2b.

Let U = {x ∈ Vj : x is a solo neighbor for some y ∈ B} and U ′ = Vj − U .
——————————– Here Lecture 8 ended.
By (1), |E(U ′, B)| ≤ 2b|U ′|. By definition, each y ∈ B either has a neighbor in U or at

least 2 neighbors in U ′. So 2(|B| − |NB(U)|) ≤ 2b|U ′|. Hence

bs+ (a− 1)|U | = b(|U ′|+ |U |) + (a− 1)|U | = b|U ′|+ (k − 1)|U |

≥ |B| − |NB(U)|+ |NB(U)|+
∑
x∈U

dA(x) = bs+ 1 +
∑
x∈U

dA(x).

This means (a − 1)|U | >
∑

x∈U dA(x), and so some x ∈ U is movable, thus we can apply
Claim 1.

Case 2: a′ ≥ b. Let I be a maximal independent subset of B with |I| ≥ s. For y ∈ I,
let σ(y) be the number of solo edges incident to y. Since all classes in B are inaccessible,
dA(y) ≥ a+ a′ − σ(y); so

σ(y) ≥ a′ + a− dA(y) ≥ a′ − b+ dB(y) + 1.

By the maximality of I,
∑

y∈I(dB(y) + 1) ≥ |B| = bs + 1. Since (a′ − b) ≥ 0, |I|(a′ − b) ≥
s(a′ − b). Hence∑

y∈I

σ(y) ≥
∑
y∈I

(a′ − b+ dB(y) + 1) ≥ |I|(a′ − b) +
∑
y∈I

(dB(y) + 1)

≥ s(a′ − b) + bs+ 1 > |A′|.
Hence some x ∈ A′ is incident to two such solo edges. If x is moveable, then we can apply
Claim 1, otherwise, we can apply Claim 2. □
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Chen-Li-Wu Conjecture: If k ≥ 3 and G is a connected graph with ∆(G) ≤ k distinct
from Kk+1 and for Kk,k, then G is equitably k-colorable.

Section 2: Vertex degrees

A sequence (d1, . . . , dn) with d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 is graphic if there is an n-vertex
(simple) graph whose degree sequence is (d1, . . . , dn).

Theorem 19 (Erdős and Gallai, 1960, Th. 6.2.10 in the book). A non-increasing sequence
d = (d1, . . . , dn) of nonnegative integers is graphic iff d1 + . . .+ dn is even and

(2)
k∑

i=1

di ≤ k(k − 1) +
n∑

j=k+1

min{k, dj} ∀k ∈ [n].

Proved in Math581.

Theorem 20 (Havel 1955, Hakimi 1962, Th. 6.2.5 in the book). The only graphic sequence of
length 1 is (0). For n > 1 a sequence d = (d1, . . . , dn) of integers with d1 ≥ d2 ≥ . . . ≥ dn ≥ 0
is graphic if and only if the sequence d′ = (d2−1, d3−1, . . . , dd1+1−1, dd1+2, . . . , dn) is graphic.

——————————– Here Lecture 9 ended.

Example: (5, 5, 3, 3, 2, 2, 1, 1).
Proof. (⇐=) Suppose d′ is graphic. Let G′ be a simple graph with degree sequence d′

and vertex set {v2, . . . , vn} where dG′(vi) = d′i−1.
Let G be the graph obtained by adding to G′ a new vertex v1 adjacent to v2, . . . , vd1+1.

Then the degree sequence of G is d. Thus d is graphic.

(=⇒) Suppose d is graphic. Among the simple graphs with degree sequence d and vertex
set V = {v1, v2, . . . , vn} where the degree of vi is di for all i, choose a graph G in which

(3) v1 has the most neighbors in S = {v2, . . . , vd1+1}.
If NG(v1) = S, then the degree sequence of G − v1 is d′, and hence d′ is graphic. Thus
assume v1 is not adjacent to some vi ∈ S.

In this case, v1 has a neighbor vj /∈ S. Since i < j, di ≥ dj. Moreover, vi is not adjacent
to v1 while vj is. Together with di ≥ dj, this yields that there is vk ∈ V adjacent to vi but
not to vj.

Then the graph G1 obtained from G by deleting edges v1vj and vivk and adding edges
v1vi and vjvk is a simple graph with the same degree sequence as G. But in this graph, v1
has more neighbors in S, contradicting (3). □

Definition of 2-switches.

Theorem 21 (Many people, Th. 6.2.7 in the book). If G and H are graphs on the same
vertex set V , then dG(v) = dH(v) for all v ∈ V iff one can transform G into H by a sequence
of 2-switches.

Proof. (⇐=) Evident.
(=⇒) By induction on n. For n ≤ 3 degree sequence defines the graph. Let n ≥ 4. Rename

the vertices in V so that dG(v1) ≥ dG(v2) ≥ . . . ≥ dG(vn). Let dG(v1) = D. By the proof
9



of Theorem 20, via 2-switches we can get from G a graph G∗ s.t. NG∗(v1) = {v2, . . . , vD+1}
and get from H a graph H∗ s.t. NH∗(v1) = {v2, . . . , vD+1}.

Let G′ = G∗ − v1 and H ′ = H∗ − v1. The degrees of the vertices in G′ and H ′ coincide.
Thus by induction we can transform G′ to H ′. Since these 2-switches do not involve edges
incident to v1, these switches also transform G∗ to H∗. So, we can transform by 2-switches:
G → G∗ → H∗ → H. □

Theorem 22 (Edmongs 1964, Th. 6.2.23 in the book). For k ≥ 2, a sequence d =
(d1, . . . , dn) of nonnegative integers is the degree sequence of a k-edge-connected graph iff
d is graphic and min{di : 1 ≤ i ≤ n} ≥ k.

Proof. (=⇒) Evident.
(⇐=) Find a realization of d with the maximum edge connectivity. Suppose it is h < k.

Than among h-edge-connected realizations of d choose G with the fewest edge cuts with h
edges.

Since k ≥ 2, h ≥ 1! (May use hw).
Choose an inclusion minimal A ⊂ V (G) with |EG(A, V (G)−A)| = h. Let B be a smallest

subset of V (G) − A s.t. |EG(B, V (G) − B)| = h. Let P be a shortest A,B-path with
x ∈ A ∩ P and y ∈ B ∩ P .
Since |EG(A, V (G)− A)| < k, there is a neighbor w ∈ A of x with N(w) ⊆ A! Similarly,

there is a neighbor z ∈ B of y with N(z) ⊆ B. Construct G′ by deleting xw an yz and
adding xz and yw. Then |EG′(A, V (G) − A)| > h. The theorem will be proved when we
show the following claims:

(i) κ′(G′) ≥ h and
(ii) No new U with |EG′(U, V (G)− U)| = h appear.

If at least one of (i) and (ii) does NOT hold, then there is D ⊂ V (G) s.t.

(4) |EG′(D, V (G)−D)| ≤ h and |EG′(D, V (G)−D)| < |EG(D, V (G)−D)|.

Then we may assume {x, z} ⊆ D and {y, w} ⊆ D. In particular, A∩D ̸= ∅ and A−D ̸= ∅.
Note

h ≥ |EG′(D, V (G)−D)| = |EG′(D∩A,A−D)|+ |EG′(D∩B,B−D)|+ |EG′(D∩A,A−D)|

+|EG′(D ∩B,B −D)|+ |EG′(D − A−B), D − A−B)|.
Since one of the edges in P connects D with D, |EG′(D∩A,A−D)|+ |EG′(D∩B,B−D)| ≤
h− 1.

——————————– Here Lecture 10 ended.
Assume by symmetry that |EG′(D∩A,A−D)| ≤ ⌊(h−1)/2⌋. Then |EG(D∩A,A−D)| ≤

⌊(h− 1)/2⌋.
Again by symmetry, |EG(D ∩ A,A)| ≤ ⌊(h)/2⌋. Then

|EG(D ∩ A,A ∩D)| ≤ ⌊(h− 1)/2⌋+ ⌊h/2⌋ ≤ h− 1, a contradiction. □

Theorem 23 (Lovász, 1966 (born 1948)), Th. 6.2.29 in the book). Let G be a graph. If
D1, . . . , Dt are nonnegative integers such that

(5)
∑t

i=1
(Di + 1) ≥ ∆(G) + 1,
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then there is a partition (V1, . . . , Vt) of V (G) s.t.

∆(G[Vi]) ≤ Di ∀i ∈ [t].

Proof. Choose a partition (V1, . . . , Vt) of V (G) to minimize
∑t

i=1 |E(G[Vi])|/Di. If v ∈ Vi

and dG[Vi](v) ≥ Di + 1, then there is j ∈ [t] s.t. dG[Vj∪{v}](v) ≤ Dj. Move v there. □

Conjecture (Correa-Havet-Sereni, 2009). There exists an integer k0 ≥ 3 such that for
each k ≥ k0, the vertex set of every planar graph G with maximum degree at most 2k + 2
can be partitioned intosubsets V1 and V2 such that ∆(G[Vi]) ≤ k for i = 1, 2.

Theorem 24 (Stiebitz 1996 (was Thomassen’s Conjecture), Th. 6.2.30 in the book). If
δ(G) ≥ s+ t+1, then there is a partition (A,B) of V (G) s.t. δ(G[A]) ≥ s and δ(G[B]) ≥ t.

Proof. An (s, t)-triple of G is a partition (A,B,C) of V (G) s.t. δ(G[A]) ≥ s and
δ(G[B]) ≥ t. We want to prove that G has an (s, t)-triple (A,B,C) with C = ∅.
Choose a minimum A′ ⊂ V (G) with δ(G[A′]) ≥ s. By minimality, G[A′] is s-degenerate.

If G[A′] is not t-degenerate, then there is B′′ ⊆ A′ with δ(G[B′]) ≥ t+ 1. In the latter case,
G has an (s, t)-triple (A′, B′, A′ ∪B′). In the former case, among partitions (A′, B′) of V (G)
into an s-degenerate and a t-degenerate induced subgraphs, choose (A,B) maximizing

f(A,B) = |E(G[A])|+ |E(G[B])|+ t|A|+ s|B|.
If there is v ∈ A with dG[A](v) ≤ s − 1, then by moving v into B we decrease |E(G[A])| by
at most s− 1, increase |E(G[B])| by at least t+ 2, decrease t|A| by t and increase s|B|, the
net change for f(A,B) positive, a contradiction. Thus δ(G[A]) ≥ s. Similarly, δ(G[B]) ≥ t,
proving the theorem.

So, in any case G has an (s, t)-triple (A′, B′, A′ ∪B′). Among such triples choose one with
maximum |A′ ∪B′|. If there is x ∈ V (G)−A′ −B′, then by maximality, v has at most t− 1
neighbors in B′ and hence at least s+ 1 neighbors in B′. It follows that each u ∈ B′ has at
least s neighbors in B′. So we have an (s, t)-triple (B′, B′, ∅). □

——————————– Here Lecture 11 ended.
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