Lecture notes

We count graphs with a labeled set of vertices, usually, $[n]$.
Ex.: There are $2^{3}=8$ distinct graphs on [3], and 3 of these graphs are trees.
Here is a slight extension of the famous Cayley's Formula (proved by Borchardt in 1860).
Theorem 1 (Th. 6.1.18 in the book). For all $1 \leq k \leq n$, the number $b_{n, k}$ of forests of rooted trees with vertex set $[n]$ that have k components and a given set of k roots is $k n^{n-k-1}$. In particular, there are n^{n-2} trees with vertex set n.

Proof. Induction on n. If $n=1$ or $n=k$, then $b_{n, k}=1$.
Suppose $n>k \geq 1$ and the theorem holds for all smaller $n^{\prime} \geq k^{\prime}$. Consider an n-vertex k-component forest F with the set K of k roots and the set R of the neighbors of these roots. By deleting K from F, we get an $(n-k)$-vertex r-component forest F^{\prime} with with the set R of r roots. By definition, the number of such forests with the set of roots R is $b_{n-k, r}$. Each such F^{\prime} can be extended to an n-vertex k-component forest F with the set K of roots in k^{r} ways. So by induction,

$$
\begin{aligned}
& b_{n, k}=\sum_{r=1}^{n-k}\binom{n-k}{r} k^{r} b_{n-k, r}=\sum_{r=1}^{n-k}\binom{n-k}{r} k^{r} r(n-k)^{n-k-r-1} \\
= & k \sum_{r=1}^{n-k}\binom{n-k-1}{r-1} k^{r-1}(n-k)^{n-k-1-(r-1)}=k(k+n-k)^{n-k-1} .
\end{aligned}
$$

Among ways to code a graph are adjacency and incidence matrices. For labeled trees, there are nicer and shorter ways to code. Consider the following procedure for a tree T with vertex set $\{1, \ldots, n\}$:

Prüfer algorithm. Let $T_{0}=T$. For $i=1, \ldots, n-1$,
(a) let b_{i} be the smallest leaf in T_{i-1},
(b) denote by a_{i} the neighbor of b_{i} in T_{i-1}, and
(c) let $T_{i}=T_{i-1}-b_{i}$.

The Prüfer code of T is the vector $\left(a_{1}, \ldots, a_{n-2}\right)$.
EXAMPLE.

Properties of Prüfer algorithm

(P1) $a_{n-1}=n$.
(P2) Any vertex of degree s in T appears in $\left(a_{1}, \ldots, a_{n-2}\right)$ exactly $s-1$ times.
(P3) $b_{i}=\min \left\{k: k \notin\left\{b_{1}, \ldots, b_{i-1}\right\} \cup\left\{a_{i}, a_{i+1}, \ldots, a_{n-2}\right\}\right\}$ for each i.
Proofs. (P1) follows from the fact that we always have a leaf distinct from n.
(P2) follows from the facts that at the moment some k appears in $\left(a_{1}, \ldots, a_{n-2}\right)$, its degree decreases by 1 and for $s \geq 3$ the neighbors of leaves in s-vertex trees are not leaves.
(P3) follows from the algorithm and (P2).

Theorem 2 (Prüfer, 1918). Every vector $\left(a_{1}, \ldots, a_{n-2}\right)$ with $a_{i} \in\{1, \ldots, n\}$ for each i is the Prüfer code of exactly one labeled n-vertex tree.

Here Lecture 1 ended.

Proof. Uniqueness. By (P1) we know $a_{n-1}=n$. Then by (P3), we can reconstruct b_{i} for all $1 \leq i \leq n-1$. Thus the edges are $a_{1} b_{1}, \ldots, a_{n-1} b_{n-1}$.

Existence. Given $\left(a_{1}, \ldots, a_{n-2}\right)$, we let $a_{n-1}=n$ and define numbers b_{i} by (P3). Now consider the edges going from $a_{n-1} b_{n-1}$ backwards and check that for each i, b_{i} is a leaf in the graph formed by the edges $a_{i} b_{i}, \ldots, a_{n-1} b_{n-1}$.

AN EXAMPLE.
Theorem 3 (Matrix Tree Theorem, Kirchfoff, 1847). Let G be a loopless multigraph with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $a_{i, j}$ edges connecting v_{i} and v_{j}. Let $Q=\left(q_{i, j}\right)_{i, j=1}^{n}$, where $q_{i, j}=\left\{\begin{array}{ll}d\left(v_{i}\right), & \text { if } j=i ; \\ -a_{i, j}, & \text { if } j \neq i .\end{array}\right.$ Let $Q_{s, t}$ be obtained from Q by deleting row s and column t. Then $\tau(G)=(-1)^{s+t} \operatorname{det} Q_{s, t}$.

Laplace extension: Let $A=\left(a_{i j}\right)_{i, j=1}^{n}$ be a square matrix. Then

1) For each $i, \operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} A_{i j}$.
2) For each $i_{2} \neq i_{1}, \sum_{j=1}^{n}(-1)^{i_{1}+j} a_{i_{1} j} \operatorname{det} A_{i_{2} j}=0$.

Lemma 4. Let $A=\left(a_{i j}\right)_{i, j=1}^{n}$ be a matrix with columns A_{1}, \ldots, A_{n}. If $\sum_{j=1}^{n} A_{j}=\left(\begin{array}{c}0 \\ 0 \\ \ldots \\ 0\end{array}\right)$, then for each i and each j_{1}, j_{2},

$$
(-1)^{j_{1}} \operatorname{det} A_{i j_{1}}=(-1)^{j_{2}} \operatorname{det} A_{i j_{2}}
$$

Proof in class and Lemma 6.1.24 in the book.
Lemma 5 (Binet-Cauchy Formula). Let $A=\left(a_{i j}\right)$ be an $n \times m$ matrix, $B=\left(b_{j i}\right)$ be an $m \times n$ matrix, $C=A B$. For $S \subset[m]$ with $|S|=n$, let A_{S} (respectively, B_{S}) denote the $n \times n$ submatrix of A (respectively, of B) formed by the columns (respectively, rows) indexed by S. Then

$$
\operatorname{det} A=\sum_{S \subset[m]:|S|=n} \operatorname{det} A_{S} \operatorname{det} B_{S} \text {. }
$$

This is a HOMEWORK PROBLEM.
Proof of Matrix Tree Theorem. (1) Let D be any orientation of G and M be its incidence matrix. Then $Q=M M^{T}$.
(2) Let B be any $(n-1) \times(n-1)$-submatrix of M. Then $\operatorname{det} B=0$ if the corresponding $n-1$ edges in G form a subgraph with a cycle. Otherwise, $\operatorname{det} B \in\{-1,1\}$.

Let M^{*} be obtained from M by deleting row n. Then $Q^{*}=M^{*}\left(M^{*}\right)^{T}$.
(3) Calculate $\operatorname{det} Q^{*}$ by Lemma 5: every term is 0 or 1 , and 1 if the edges in S form a tree.

Here Lecture 2 ended.

A branching or out-tree is an orientation of a tree that directs all edges from a given vertex (a root).

An arborescence is a digraph whose every component is a branching. An in-tree is a reversed branching.

For a digraph G with incidence matrix A, let D^{+}(resp. D^{-}) be the diagonal matrix of in-degrees (resp. out-degrees), $Q^{+}=D^{+}-A^{T}$ and $Q^{-}=D^{-}-A^{T}$.

Examples.
Theorem 6 (Directed Matrix Tree Theorem, Tutte, 1948, Th. 6.1.28 in the book). The number of spanning out-trees (in-trees) of G rooted at v_{i} is the value of the cofactor for any entry in ith row of Q^{-}(ith column of $\left.Q^{+}\right)$.

Examples.

Instead of Theorem 6, we will prove a much more general theorem:
Theorem 7 (Matrix Arborescence Theorem, Chaiken-Kleitman, 1978, Th. 6.1.30 in the book). For real $a_{i j}$, variables x_{1}, \ldots, x_{n} and an arborescence A on $\left\{v_{1}, \ldots, v_{n}\right\}$, let $w_{A}=$ $\prod_{v_{j} v_{i} \in E(A)} a_{i j} x_{j}$. For $S \subseteq[n]$, let $T(S)$ be the set of all arborescences on $\left\{v_{1}, \ldots, v_{n}\right\}$ whose set of roots is $\left\{v_{i}: i \in S\right\}$. Define $Q=\left(q_{i j}\right)_{i, j=1}^{n}$ as follows:

$$
q_{i j}= \begin{cases}-a_{i j} x_{j}, & i \neq j ; \\ \sum_{\ell \neq i} a_{i \ell} x_{\ell}, & i=j\end{cases}
$$

If Q_{S} is obtained from Q by deleting all rows and columns indexed by S, then

$$
\operatorname{det} Q_{S}=\sum_{A \in T(S)} w_{A}
$$

Observation. Theorem 6 is obtained from Theorem 7 by letting $a_{i j}$ be the number of edges from v_{j} to v_{i}, letting all $x_{j}=1$ and S be a singleton.

EXAMPLES.
Proof of Theorem 7. By induction on $m=n-s$, where $s=|S|$. If $n=s$, then we get $1=1$. Suppose the theorem holds for $n-s \leq m-1$. Consider any choice of $S \subset[n]$ with $|S|=s$ and any $a_{i j}$ s. We view $\operatorname{det} Q_{S}$ as a polynomial of degree $m, f_{S}\left(x_{1}, \ldots, x_{n}\right)$. For $i \in S$, call x_{i} a root variable.

Two claims:
(1) In both, $\sum_{A \in T(S)} w_{A}$ and $f_{S}\left(x_{1}, \ldots, x_{n}\right)$ each term has degree 0 in some non-root variable
(2) For each non-root variable x_{i}, the terms in which x_{i} is missing coincide in $\sum_{A \in T(S)} w_{A}$ and $f_{S}\left(x_{1}, \ldots, x_{n}\right)$.

Together, the claims imply the theorem, so let us prove them.

Here Lecture 3 ended.

Proof of (1). Since $k<n$, in w_{A} there are non-root vertices. The outdegree of a non-root leaf v_{i} is 0 , and hence x_{i} is not present.

Consider $\operatorname{det} Q_{S}$. Recall that the sum of columns of Q is the zero vector by definition. When we delete rows and columns corresponding to S, this is not true because in the diagonal elements some terms with x_{j} for $j \in S$ may remain. But when we set all these variables to 0 , the property recovers. So $\left.f_{S}\right|_{x_{j}=0, j \in S} \equiv 0$. This means each term of Q_{S} contains x_{j} for some $j \in S$. Since the degree of each term is m, some of the m non-root variables is missing.

Proof of (2). Consider the terms with no non-root x_{t} in both polynomials. In $\sum_{A \in T(S)} w_{A}$ they arise from the arborescences where x_{t} is a leaf. Each such arborescence A is obtained from an arborescence A^{\prime} with $n-1$ vertices by adding an arc to v_{t}. So if T^{\prime} is the set of all arborescences on $V(G)-v_{t}$, then the sum of terms omitting x_{t} is

$$
\left(\sum_{A^{\prime} \in T^{\prime}(S)} w_{A^{\prime}}\right)\left(\sum_{j \neq t} a_{t, j} \cdot x_{j}\right) .
$$

In f_{S} the terms omitting x_{t} form $f_{S}\left(x_{1}, \ldots, x_{t-1}, 0, x_{t+1}, \ldots, x_{n}\right)$. The only non-zero entry in the t s column of this determinant is $\sum_{j \neq t} a_{t, j} x_{j}$ in row t. Expand the determinant w.r.t. this column: By the IH , the remaining determinant equals $\left(\sum_{A^{\prime} \in T^{\prime}(S)} w_{A^{\prime}}\right)$.

Together, the claims prove the theorem.
AN EXAMPLE.

Eulerian circuits versus trees in digraphs

Lemma 8 (Lem. 6.1.33 in the book). For each Eulerian circuit in a digraph G that begins from vertex v along edge e, the set T of edges last leaving each vertex apart from v forms an in-tree with root v.

Proof. The outdegree in T of each vertex apart from v is 1 , the outdegree of v is 0 , and there are no directed cycles.

Algortithm.

Input. An Eulerian digraph D and a spanning in-tree T.
Step 1. For each $u \in V(D)$, give an order of exiting edges s.t.
$\left.{ }^{*}\right)$ for each $u \neq v$, the edge of T is the last.
Step 2. Starting from v always go along the non-used edges smallest in the order.
Lemma 9 (Lem. 6.1.35 in the book). The algorithm above always produces an Eulerian circuit in D.

Proof. We check that by $\left(^{*}\right)$ the our trail L can stop only at v. Hence L uses all edges entering v. Then for each in-neighbor w of v, L also uses all edges entering w. Continuing, we conclude that L uses all edges at each vertex.

Theorem 10 (BEST Theorem, de Bruijn-van Aardenne-Ehrenfest, 1951, Smith-Tutte, 1941, Th. 6.1.36 in the book). Let D be an Eulerian digraph with $V(D)=\left\{v_{1}, \ldots, v_{n}\right\}$,
where $d^{+}\left(v_{i}\right)=d^{-}\left(v_{i}\right)=d_{i}$ for all $1 \leq i \leq n$. Let $M=M_{j}$ be the number of spanning in-trees in D with root v_{j}. Then the number of Eulerian circuits in D is

$$
M \prod_{i=1}^{n}\left(d_{i}-1\right)!
$$

Proof. For each in-tree, the algorithm produces $\prod_{i=1}^{n}\left(d_{i}-1\right)$! distinct Eulerian circuits, and by Lemma 8, each Eulerian circuit is obtained this way.

Corollary 11. In each Eulerian digraph, the number of spanning in-trees with root v_{i} is equal for all v_{i} (and equal to the number of spanning out-trees with root v_{i}).

Corollary 12. In each Eulerian digraph, the number of Eulerian circuits can be computed in polynomial time.

Note that for undirected graphs it is NP-complete to calculate the number of Eulerian circuits.

Here Lecture 4 ended.

Decompositions and graceful labelings

A decomposition of a graph G is a set of edge-disjoint subgraphs of G whose union is G. An H-decomposition of G is a decomposition in which each subgraph is H.

Conjecture (Ringel, 1964). For each m-edge tree $T, K_{2 m+1}$ has a T-decomposition.
Examples.
Solution by Montgomery, Pokrovsky and Sudakov.
A graceful labeling of a graph G with m edges is an injective function $f: V(G) \rightarrow$ $\{0,1, \ldots, m\}$ such that $\{|f(u)-f(v)|: u v \in E(G)\}=[m]$.

Examples.
Conjecture (Kotzig, 1964?). Every tree has a graceful labeling.
Theorem 13 (Rosa, 1967, Th. 6.1.41 in the book). If a graph T with m edges has a graceful labeling, then $K_{2 m+1}$ has a T-decomposition.

Proof. View $0,1, \ldots, 2 m$ as vertices of a cycle $C_{2 m+1}$. The difference between i and j is the distance in $C_{2 m+1}$ between them. The set E_{i} of the edges in $K_{2 m+1}$ has $2 m+1$ edges forming a 2-factor. When we place the vertices of T onto $C_{2 m+1}$ according to its graceful labeling, all edges of T are in different E_{i}. Rotating T around the cycle never uses the same edges, and each edge will be in exactly one copy of T.

Caterpillars have graceful labelings. - The idea in the lecture and in the book.
Theorem 14 (Wilson, 1976, Th. 6.1.49 in the book). For a graph H with m edges, let $q=q(H)$ be the $\mathbf{g c d}$ of the vertex degrees of H. There is n_{H} s.t. for each $n \geq n_{H}$ with $m \left\lvert\,\binom{ n}{2}\right.$ and $q \mid(n-1)$ graph K_{n} has an H-decomposition.

Conjecture (Graham-Häggkvist). For each m-edge tree T, each $2 m$-regular graph has a T-decomposition and each m-regular bipartite graph has a T-decomposition.

Theorem 15 (Th. 6.1.52 in the book). Let T be a tree with m edges. If a $2 m$-regular graph G has a 2 -factorization s.t. no cycle in G of length at most $1+\operatorname{diam}(T)$ has all its edges in different factors, then G has a T-decomposition.

Proof. Let $F=\left(F_{1}, \ldots, F_{2 m}\right)$ be such a "good" 2-factorization. By induction on m we prove that for any injective marking f of the vertices of T, there is a T-decomposition of G s.t.
(a) each vertex of G appears in $m+1$ copies of T once with each name, and
(b) each copy of T uses one edge from each F_{i}.

Here Lecture 5 ended.

For $m=1$ the claim is immediate. Suppose it is proved for all $m^{\prime}<m$. Let f be a vertex marking of T and i is a leaf in T with neighbor j. By induction there is such decomposition of $G-E\left(F_{m}\right)$ into copies of $T^{\prime}=T-i$. Fix a cyclic orientation D of all cycles in F_{m}. For each $v \in V(G)$, let v^{\prime} be the unique successor of v in F_{m}. By (a), there is a unique copy $T^{\prime}(v)$ of T^{\prime} in which v plays the role of j. Extend $T^{\prime}(v)$ to a copy $T^{\prime}(v)$ of T by adding edge $v v^{\prime}$. The main observation is that v^{\prime} is not in $V\left(T^{\prime}(v)\right)$, since otherwise by (b) we would get a cycle all whose edges are in distinct F_{h}.

Conjecture (Gyárfás). For any trees T_{1}, \ldots, T_{n-1} where T_{i} has i edges, K_{n} decomposes into T_{1}, \ldots, T_{n-1}.

AN EXAMPLE.

Graph packing

A packing of n-vertex graphs G_{1}, \ldots, G_{k} is an expression of them as edge-disjoint subgraphs of K_{n}.

Two n-vertex graphs G and H pack if G is a subgraph of the complement of H, equivalently, if H is a subgraph of the complement of G.

1978: Sauer-Spencer, Bollobás-Eldridge, Catlin.
Theorem 16 (Sauer-Spencer, 1978, Prop. 6.1.56 in the book). If G and H are n-vertex graphs and $|E(G)| \cdot|E(H)|<\binom{n}{2}$, then G and H pack. The restriction is sharp.

Proof. There are n ! bijections from $V(G)$ to $V(H)$. For each $e \in E(G), f \in E(H)$, there are exactly $2(n-2)$! such bijections mapping e onto f. So, the total number of bijections mapping some edge of G onto some edge of H is less than

$$
\binom{n}{2} \cdot(2(n-2)!)=n!.
$$

Hence there is a bijection that is a packing.
Examples: 1) K_{n} and a $\left.K_{2}, 2\right)$ Star and perfect matching when n is even.

Here Lecture 6 ended.

Theorem 17 (Catlin, 1974, Sauer-Spencer, 1978, Th. 6.1.57 in the book). If G and H are n-vertex graphs and $2 \Delta(G) \Delta(H)<n$, then G and H pack. The restriction is sharp.

Proof. Let σ be a bijection from $V(G)$ to $V(H)$ with the least edges of G mapped onto edges of H. Let $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $V(H)=\left\{y_{1}, \ldots, y_{n}\right\}$ so that $\sigma\left(x_{i}\right)=y_{i}$ for all i. W.l.o.g., we may assume that $x_{1} x_{n} \in E(G)$ and $y_{1} y_{n} \in E(H)$. We refer to edges of G as
"red" and to edges of H as "blue". If we switch the image of x_{n} with the image of x_{k} for some $2 \leq k \leq n-1$, then there are two dangers: (a) there exists j s.t. $x_{n} x_{j} \in E(G)$ and $y_{k} y_{j} \in E(H)$ or (b) there exists i s.t. $x_{k} x_{i} \in E(G)$ and $y_{n} y_{i} \in E(H)$.

The k not good by (a) are blue neighbors of red neighbors of x_{n}. The total number of blue neighbors of red neighbors of x_{n} is at most $\Delta(G) \Delta(H)$, and one of them is x_{n} itself, so (a) excludes at most $\Delta(G) \Delta(H)-1$ options for $2 \leq k \leq n-1$. Similarly, (b) also excludes at most $\Delta(G) \Delta(H)-1$ options, at so at least one switch would decrease the number of edges of G mapped onto edges of H, contradicting the choice of σ.

Examples of sharpness!
Conjecture, Bollobás-Eldridge-Catlin. If G and H are n-vertex graphs and $(\Delta(G)+$ 1) $(\Delta(H)+1) \leq n+1$, then G and H pack.

Examples of sharpness!
Aigner-Brandt and Alon-Fisher: $\Delta(G) \leq 2$. Csaba-Shokoufandeh-Szemerédi: $\Delta(G)=3$ for huge n.

Equitable coloring

A proper k-coloring of a graph G is equitable if the sizes of all color classes differ by at most 1. In terms of packing, this is a packing of a graph with the n-vertex graph that is a disjoint union of cliques of almost the same size.

Examples: $K_{1, n-1}, K_{2 m+1,2 m+1}$.
Not monotone!
Theorem 18 (Hajnal-Szemerédi, 1970, Th. 6.1.60 in the book). For each graph G and each $k>\Delta(G), G$ has an equitable k-coloring.

Proof. Step 1: Prove that it is enough to consider the case $|V(G)|$ divisible by k, say $|V(G)|=n=k s$.

Step 2: Use induction on $|E(G)|$ for graphs with max degree at most $k-1$. The base is trivial. Suppose the theorem holds for all graphs with less than m edges and G has m edges and max degree at most $k-1$.

Construct a near-equitable k-coloring of G. Let the color classes be V_{1}, \ldots, V_{k}, where $\left|V_{1}\right|=s-1,\left|V_{2}\right|=\ldots=\left|V_{k-1}\right|=s$, and $\left|V_{k}\right|=s+1$.
——Here Lecture 7 ended.
Step 3: Define a digraph H with $V(H)=\left\{V_{1}, \ldots, V_{k}\right\}$ and $V_{i} V_{j} \in E(H)$ iff some $w \in V_{i}$ has no neighbors in V_{j}. Say that V_{i} is accessible if H has a V_{i}, V_{1}-path.

If V_{k} is accessible, then we are done. So suppose not. Choose a near-equitable k-coloring f with the fewest inaccessible classes. Let \mathcal{A} be the set of accessible classes and $\mathcal{B}=V(H)-\mathcal{A}$. So $V_{1} \in \mathcal{A}, V_{k} \in \mathcal{B}$.

Let $a=|\mathcal{A}|, b=|\mathcal{B}|, A \bigcup_{W \in \mathcal{A}} W, B \bigcup_{W \in \mathcal{B}} W$.
For $W, X \in \mathcal{A}, W$ blocks X if $H-W$ has no X, V_{1}-path. In particular, V_{1} blocks all. If $W \in \mathcal{A}$ blocks no other $X \in \mathcal{A}$, it is called free. Let \mathcal{A}^{\prime} be the set of free classes, $a^{\prime}=|\mathcal{A}|^{\prime}$, $A^{\prime} \bigcup_{W \in \mathcal{A}^{\prime}} W$.

A vertex $x \in X \in \mathcal{A}^{\prime}$ is moveable if there is another $W \in \mathcal{A}$ s.t. x has no neighbors in W.
For $x \in X \in \mathcal{A}^{\prime}$ and $y \in B, x$ is the solo neighbor of y if x is the unique neighbor of y in X. In this case, edge $x y$ is a solo edge.

Step 4: Claim 1. If $x \in X \in \mathcal{A}^{\prime}$ is moveable, $y \in Y \in \mathcal{B}$ and $x y$ is a solo edge, then G has an equitable k-coloring.

Proof: in the book and in class.
Step 5: Claim 2. If $x \in X \in \mathcal{A}^{\prime}$ is not moveable, $y, y^{\prime} \in \mathcal{B}$ and $x y, x y^{\prime}$ are solo edges, then G has a near-equitable k-coloring with fewer inaccessible classes.

Proof. Each $y \in \mathcal{B}$ has at least a neighbors in A and hence $<b$ neighbors in B. So by induction $G[B-y]$ has an equitable b-coloring g.

Since x is not moveable, $d_{A+y}(x) \geq a$ and so $d_{B-y}(x)<k-a=b$. Hence we can add x to some of b classes, and call the new class V_{k}.

Since x was a solo neighbor of y in X, the set $X^{\prime}=X-x+y$ is independent. So we get a new near-equitable coloring g^{\prime} of G. Since X was free, each other class in \mathcal{A}^{\prime} is accessible. Since x was not moveable, some other vertex was, so X^{\prime} is in the new \mathcal{A}. Since $y^{\prime} x$ was solo, and $y y^{\prime} \notin E(G)$, the class of y^{\prime} is also accessible now.

Step 6: We will show now that always the conditions of Claim 1 or the conditions of Claim 2 are satisfied.

Case 1: $a^{\prime} \leq b$. Let $\mathcal{A}^{\prime \prime}=\mathcal{A}-\mathcal{A}^{\prime}$. Note $V_{1} \in \mathcal{A}^{\prime \prime}$. There is $W \in \mathcal{A}^{\prime \prime}$ that blocks only classes in \mathcal{A}^{\prime}. Let $V_{j} \in \mathcal{A}^{\prime}$ be blocked by W. Then $d_{A}(x) \geq a-a^{\prime}-1$ for each $x \in V_{j}$, so by the case,

$$
\begin{equation*}
d_{B}(x) \leq k-\left(a-a^{\prime}-1\right) \leq b+a^{\prime} \leq 2 b . \tag{1}
\end{equation*}
$$

Let $U=\left\{x \in V_{j}: x\right.$ is a solo neighbor for some $\left.y \in B\right\}$ and $U^{\prime}=V_{j}-U$.

Here Lecture 8 ended.

By (1), $\left|E\left(U^{\prime}, B\right)\right| \leq 2 b\left|U^{\prime}\right|$. By definition, each $y \in B$ either has a neighbor in U or at least 2 neighbors in U^{\prime}. So $2\left(|B|-\left|N_{B}(U)\right|\right) \leq 2 b\left|U^{\prime}\right|$. Hence

$$
\begin{gathered}
b s+(a-1)|U|=b\left(\left|U^{\prime}\right|+|U|\right)+(a-1)|U|=b\left|U^{\prime}\right|+(k-1)|U| \\
\geq|B|-\left|N_{B}(U)\right|+\left|N_{B}(U)\right|+\sum_{x \in U} d_{A}(x)=b s+1+\sum_{x \in U} d_{A}(x)
\end{gathered}
$$

This means $(a-1)|U|>\sum_{x \in U} d_{A}(x)$, and so some $x \in U$ is movable, thus we can apply Claim 1.

Case 2: $a^{\prime} \geq b$. Let I be a maximal independent subset of B with $|I| \geq s$. For $y \in I$, let $\sigma(y)$ be the number of solo edges incident to y. Since all classes in \mathcal{B} are inaccessible, $d_{A}(y) \geq a+a^{\prime}-\sigma(y)$; so

$$
\sigma(y) \geq a^{\prime}+a-d_{A}(y) \geq a^{\prime}-b+d_{B}(y)+1 .
$$

By the maximality of $I, \sum_{y \in I}\left(d_{B}(y)+1\right) \geq|B|=b s+1$. Since $\left(a^{\prime}-b\right) \geq 0,|I|\left(a^{\prime}-b\right) \geq$ $s\left(a^{\prime}-b\right)$. Hence

$$
\begin{gathered}
\sum_{y \in I} \sigma(y) \geq \sum_{y \in I}\left(a^{\prime}-b+d_{B}(y)+1\right) \geq|I|\left(a^{\prime}-b\right)+\sum_{y \in I}\left(d_{B}(y)+1\right) \\
\geq s\left(a^{\prime}-b\right)+b s+1>\left|A^{\prime}\right|
\end{gathered}
$$

Hence some $x \in A^{\prime}$ is incident to two such solo edges. If x is moveable, then we can apply Claim 1, otherwise, we can apply Claim 2.

Chen-Li-Wu Conjecture: If $k \geq 3$ and G is a connected graph with $\Delta(G) \leq k$ distinct from K_{k+1} and for $K_{k, k}$, then G is equitably k-colorable.

Section 2: Vertex degrees

A sequence $\left(d_{1}, \ldots, d_{n}\right)$ with $d_{1} \geq d_{2} \geq \cdots \geq d_{n} \geq 0$ is graphic if there is an n-vertex (simple) graph whose degree sequence is $\left(d_{1}, \ldots, d_{n}\right)$.

Theorem 19 (Erdős and Gallai, 1960, Th. 6.2.10 in the book). A non-increasing sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers is graphic iff $d_{1}+\ldots+d_{n}$ is even and

$$
\begin{equation*}
\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{j=k+1}^{n} \min \left\{k, d_{j}\right\} \quad \forall k \in[n] \tag{2}
\end{equation*}
$$

Proved in Math581.
Theorem 20 (Havel 1955, Hakimi 1962, Th. 6.2.5 in the book). The only graphic sequence of length 1 is (0). For $n>1$ a sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ of integers with $d_{1} \geq d_{2} \geq \ldots \geq d_{n} \geq 0$ is graphic if and only if the sequence $\mathbf{d}^{\prime}=\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}\right)$ is graphic.

Here Lecture 9 ended.

Example: $(5,5,3,3,2,2,1,1)$.
Proof. (\Longleftarrow) Suppose \mathbf{d}^{\prime} is graphic. Let G^{\prime} be a simple graph with degree sequence \mathbf{d}^{\prime} and vertex set $\left\{v_{2}, \ldots, v_{n}\right\}$ where $d_{G^{\prime}}\left(v_{i}\right)=d_{i-1}^{\prime}$.

Let G be the graph obtained by adding to G^{\prime} a new vertex v_{1} adjacent to $v_{2}, \ldots, v_{d_{1}+1}$. Then the degree sequence of G is \mathbf{d}. Thus \mathbf{d} is graphic.
(\Longrightarrow) Suppose \mathbf{d} is graphic. Among the simple graphs with degree sequence \mathbf{d} and vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ where the degree of v_{i} is d_{i} for all i, choose a graph G in which
v_{1} has the most neighbors in $S=\left\{v_{2}, \ldots, v_{d_{1}+1}\right\}$.
If $N_{G}\left(v_{1}\right)=S$, then the degree sequence of $G-v_{1}$ is \mathbf{d}^{\prime}, and hence \mathbf{d}^{\prime} is graphic. Thus assume v_{1} is not adjacent to some $v_{i} \in S$.

In this case, v_{1} has a neighbor $v_{j} \notin S$. Since $i<j, d_{i} \geq d_{j}$. Moreover, v_{i} is not adjacent to v_{1} while v_{j} is. Together with $d_{i} \geq d_{j}$, this yields that there is $v_{k} \in V$ adjacent to v_{i} but not to v_{j}.

Then the graph G_{1} obtained from G by deleting edges $v_{1} v_{j}$ and $v_{i} v_{k}$ and adding edges $v_{1} v_{i}$ and $v_{j} v_{k}$ is a simple graph with the same degree sequence as G. But in this graph, v_{1} has more neighbors in S, contradicting (3).

Definition of 2-switches.
Theorem 21 (Many people, Th. 6.2.7 in the book). If G and H are graphs on the same vertex set V, then $d_{G}(v)=d_{H}(v)$ for all $v \in V$ iff one can transform G into H by a sequence of 2-switches.

Proof. (\Longleftarrow) Evident.
(\Longrightarrow) By induction on n. For $n \leq 3$ degree sequence defines the graph. Let $n \geq 4$. Rename the vertices in V so that $d_{G}\left(v_{1}\right) \geq d_{G}\left(v_{2}\right) \geq \ldots \geq d_{G}\left(v_{n}\right)$. Let $d_{G}\left(v_{1}\right)=D$. By the proof
of Theorem 20, via 2 -switches we can get from G a graph G^{*} s.t. $N_{G^{*}}\left(v_{1}\right)=\left\{v_{2}, \ldots, v_{D+1}\right\}$ and get from H a graph H^{*} s.t. $N_{H^{*}}\left(v_{1}\right)=\left\{v_{2}, \ldots, v_{D+1}\right\}$.

Let $G^{\prime}=G^{*}-v_{1}$ and $H^{\prime}=H^{*}-v_{1}$. The degrees of the vertices in G^{\prime} and H^{\prime} coincide. Thus by induction we can transform G^{\prime} to H^{\prime}. Since these 2-switches do not involve edges incident to v_{1}, these switches also transform G^{*} to H^{*}. So, we can transform by 2-switches: $G \rightarrow G^{*} \rightarrow H^{*} \rightarrow H$.

Theorem 22 (Edmongs 1964, Th. 6.2.23 in the book). For $k \geq 2$, a sequence $\mathbf{d}=$ $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers is the degree sequence of a k-edge-connected graph iff \mathbf{d} is graphic and $\min \left\{d_{i}: 1 \leq i \leq n\right\} \geq k$.

Proof. (\Longrightarrow) Evident.
(\Longleftarrow) Find a realization of \mathbf{d} with the maximum edge connectivity. Suppose it is $h<k$. Than among h-edge-connected realizations of \mathbf{d} choose G with the fewest edge cuts with h edges.

Since $k \geq 2, h \geq 1$! (May use hw).
Choose an inclusion minimal $A \subset V(G)$ with $\left|E_{G}(A, V(G)-A)\right|=h$. Let B be a smallest subset of $V(G)-A$ s.t. $\left|E_{G}(B, V(G)-B)\right|=h$. Let P be a shortest A, B-path with $x \in A \cap P$ and $y \in B \cap P$.

Since $\left|E_{G}(A, V(G)-A)\right|<k$, there is a neighbor $w \in A$ of x with $N(w) \subseteq A$! Similarly, there is a neighbor $z \in B$ of y with $N(z) \subseteq B$. Construct G^{\prime} by deleting $x w$ an $y z$ and adding $x z$ and $y w$. Then $\left|E_{G^{\prime}}(A, V(G)-A)\right|>h$. The theorem will be proved when we show the following claims:
(i) $\kappa^{\prime}\left(G^{\prime}\right) \geq h$ and
(ii) No new U with $\left|E_{G^{\prime}}(U, V(G)-U)\right|=h$ appear.

If at least one of (i) and (ii) does NOT hold, then there is $D \subset V(G)$ s.t.

$$
\begin{equation*}
\left|E_{G^{\prime}}(D, V(G)-D)\right| \leq h \text { and }\left|E_{G^{\prime}}(D, V(G)-D)\right|<\left|E_{G}(D, V(G)-D)\right| \tag{4}
\end{equation*}
$$

Then we may assume $\{x, z\} \subseteq D$ and $\{y, w\} \subseteq \bar{D}$. In particular, $A \cap D \neq \emptyset$ and $A-D \neq \emptyset$. Note

$$
\begin{gathered}
h \geq\left|E_{G^{\prime}}(D, V(G)-D)\right|=\left|E_{G^{\prime}}(D \cap A, A-D)\right|+\left|E_{G^{\prime}}(D \cap B, B-D)\right|+\left|E_{G^{\prime}}(D \cap A, \bar{A}-D)\right| \\
\left.+\left|E_{G^{\prime}}(D \cap B, \bar{B}-D)\right|+\mid E_{G^{\prime}}(D-A-B), \bar{D}-A-B\right) \mid .
\end{gathered}
$$

Since one of the edges in P connects D with $\bar{D},\left|E_{G^{\prime}}(D \cap A, A-D)\right|+\left|E_{G^{\prime}}(D \cap B, B-D)\right| \leq$ $h-1$.

Here Lecture 10 ended.

Assume by symmetry that $\left|E_{G^{\prime}}(D \cap A, A-D)\right| \leq\lfloor(h-1) / 2\rfloor$. Then $\left|E_{G}(D \cap A, A-D)\right| \leq$ $\lfloor(h-1) / 2\rfloor$.

Again by symmetry, $\left|E_{G}(D \cap A, \bar{A})\right| \leq\lfloor(h) / 2\rfloor$. Then

$$
\left|E_{G}(D \cap A, \overline{A \cap D})\right| \leq\lfloor(h-1) / 2\rfloor+\lfloor h / 2\rfloor \leq h-1, \text { a contradiction. }
$$

Theorem 23 (Lovász, 1966 (born 1948)), Th. 6.2.29 in the book). Let G be a graph. If D_{1}, \ldots, D_{t} are nonnegative integers such that

$$
\begin{equation*}
\sum_{i=1}^{t}\left(D_{i}+1\right) \geq \Delta(G)+1 \tag{5}
\end{equation*}
$$

then there is a partition $\left(V_{1}, \ldots, V_{t}\right)$ of $V(G)$ s.t.

$$
\Delta\left(G\left[V_{i}\right]\right) \leq D_{i} \quad \forall i \in[t]
$$

Proof. Choose a partition $\left(V_{1}, \ldots, V_{t}\right)$ of $V(G)$ to minimize $\sum_{i=1}^{t}\left|E\left(G\left[V_{i}\right]\right)\right| / D_{i}$. If $v \in V_{i}$ and $d_{G\left[V_{i}\right]}(v) \geq D_{i}+1$, then there is $j \in[t]$ s.t. $d_{G\left[V_{j} \cup\{v\}\right]}(v) \leq D_{j}$. Move v there.

Conjecture (Correa-Havet-Sereni, 2009). There exists an integer $k_{0} \geq 3$ such that for each $k \geq k_{0}$, the vertex set of every planar graph G with maximum degree at most $2 k+2$ can be partitioned intosubsets V_{1} and V_{2} such that $\Delta\left(G\left[V_{i}\right]\right) \leq k$ for $i=1,2$.
Theorem 24 (Stiebitz 1996 (was Thomassen's Conjecture), Th. 6.2.30 in the book). If $\delta(G) \geq s+t+1$, then there is a partition (A, B) of $V(G)$ s.t. $\delta(G[A]) \geq s$ and $\delta(G[B]) \geq t$.

Proof. An (s, t)-triple of G is a partition (A, B, C) of $V(G)$ s.t. $\delta(G[A]) \geq s$ and $\delta(G[B]) \geq t$. We want to prove that G has an (s, t)-triple (A, B, C) with $C=\emptyset$.

Choose a minimum $A^{\prime} \subset V(G)$ with $\delta\left(G\left[A^{\prime}\right]\right) \geq s$. By minimality, $G\left[A^{\prime}\right]$ is s-degenerate. If $G\left[\overline{A^{\prime}}\right]$ is not t-degenerate, then there is $B^{\prime \prime} \subseteq \overline{A^{\prime}}$ with $\delta\left(G\left[B^{\prime}\right]\right) \geq t+1$. In the latter case, G has an (s, t)-triple $\left(A^{\prime}, B^{\prime}, \overline{A^{\prime} \cup B^{\prime}}\right)$. In the former case, among partitions $\left(A^{\prime}, B^{\prime}\right)$ of $V(G)$ into an s-degenerate and a t-degenerate induced subgraphs, choose (A, B) maximizing

$$
f(A, B)=|E(G[A])|+|E(G[B])|+t|A|+s|B| .
$$

If there is $v \in A$ with $d_{G[A]}(v) \leq s-1$, then by moving v into B we decrease $|E(G[A])|$ by at most $s-1$, increase $|E(G[B])|$ by at least $t+2$, decrease $t|A|$ by t and increase $s|B|$, the net change for $f(A, B)$ positive, a contradiction. Thus $\delta(G[A]) \geq s$. Similarly, $\delta(G[B]) \geq t$, proving the theorem.

So, in any case G has an (s, t)-triple $\left(A^{\prime}, B^{\prime}, \overline{A^{\prime} \cup B^{\prime}}\right)$. Among such triples choose one with maximum $\left|A^{\prime} \cup B^{\prime}\right|$. If there is $x \in V(G)-A^{\prime}-B^{\prime}$, then by maximality, v has at most $t-1$ neighbors in B^{\prime} and hence at least $s+1$ neighbors in $\overline{B^{\prime}}$. It follows that each $u \in \overline{B^{\prime}}$ has at least s neighbors in $\overline{B^{\prime}}$. So we have an (s, t)-triple $\left(\overline{B^{\prime}}, B^{\prime}, \emptyset\right)$.

Here Lecture 11 ended.

